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when one starts to think about possible influence of the size of a particle on
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1. Introduction

Atomic interferometry demonstrates quantum properties of atomic center of
mass motion. In a class of atomic interference experiments internal states do not
change, so that it is sufficient to consider only external states in explaining these
experiments. But, in a wider class of atomic interference experiments internal
states change and play an important role. A quite old experiment of Haroche’s
team [1] with the Rydberg atoms shows that the Rydberg atoms do not pass
through 1 µm wide slits if their principal quantum number is rather large (n > 60).
Thus, the particle density measured after the slits are null. What about a wave
function behind the array of narrow slits?

The wave function of an incident atom is the product of a wave function of
the center of mass motion and of an internal wave function. What is the influence
of slits upon each one of them? Whether both functions are equal to zero behind
the slits?

In the traditional explanation of this experiment the latter two questions
have not been posed. The standard interpretation considers only a wave function
of the center of mass motion and supposes that if the particles do not pass, a wave
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function of a particle, implicitly identified with a wave function of the center of
mass, is null behind the slits (standard assumption).

But, an internal wave function describes the size of a particle. Therefore,
logically one should expect that the slits influence an internal wave function. For
particle size larger than a slit, one may assume that this function reduces to
zero. Consequently, one cannot thus eliminate logically alternative interpretation
of this experiment, which supposes that the wave function of external motion
passes through the slits, but not the particle (alternative assumption) [2, 3].

In this paper we propose an experiment testing this alternative assumption
compared to the standard assumption. It is an experiment with large particles
(Rydberg atoms or large molecules) sent through a grating consisting of: one wide
slit which lets the particles pass, and many small slits which do not let them pass.
Theoretical predictions under the two different assumptions, mentioned above, are
derived using numerical simulation of particles’ arrivals to a screen after passing
through this complex grating. This numerical simulation is based on the time
dependent solution of Schrödinger’s equation for a quantum particle behind a
grating [3–5].

2. The Rydberg atoms asymmetric experiment

An asymmetric Rydberg atoms experiment, inspired by the Fabre et al.
experiment [1], is proposed. A Rydberg atoms’ beam with a principal quantum
number n = 60, whose speed is v = 200 m/s along the y-axis, is considered. Initial
speeds in the other directions are considered null. The beam is regarded as plane
wave.

At the distance d1 from the molecular beam source, a complex grating is
placed consisting of the 100 µm wide slit A along the x-axis and a Ronchi grating B,
with 1000 small slits of 0.1 µm width. The distance between the centers of slit A
and grating B is 300 µm. Rydberg atoms are then observed by using a detector
placed at y = 2 m behind the slits. The Rydberg atom beam is obtained from
sodium atoms, so the atom mass is m = 3.84 × 10−26 kg. With the velocity
v = 200 m/s, the de Broglie wavelength λ = 2π/k = 8.6 × 10−5 µm is much
smaller than the slits size.

The slit size of the Ronchi grid B (0.1 µm) is ten times smaller than for
the Fabre et al. experiment [1]. In this case, the Rydberg atoms with n = 60 do
not pass through the grid. On the other hand, slit A is 100 times larger than the
Rydberg atoms’ size and thus lets them pass easily.

For n = 60, the 70 ms of the Rydberg atom lifetime are sufficient for the
experiment (15 ms).

The case of the classical assumption where the wave function does not pass
through the grid B corresponds to diffraction by the slit A. The case of the alter-
native assumption where the wave function passes through the grid B and slit A
corresponds to an interference problem between the slit A and the grid B slits.



Proposed Experiment with Rydberg Atoms . . . 807

3. Wave function calculation with Feynman path
integral method, Fresnel–Kirchhoff method

and transverse momentum distribution method

The wave function of the center of mass behind a grating may be evaluated
using Feynman path integrals [6], as Gondran and Gondran [5] did for the numer-
ical simulation of Shimizu et al. experiment with cold atoms. With an incident
wave function falling to a grating ψi(x, 0−) is associated the time-dependent wave
function ψ(x, t):

ψ(x, t) =
∫

A/B

K(x, t; x′, 0−)ψi(x′, 0−)dx′, (1)

where K(x, t;x′, 0) is the free particle propagator given by

K(x, t;x′, 0) =
( m

2iπh̄

)1/2

exp
(

im
h̄

(x− x′)2

2t

)
. (2)

The integration in (1) is carried out respectively on the slit A and on the grid
B slits. The same expression for the wave function is derived using the Fresnel–
Kirchhoff integral [4] under the assumption that a motion along y axis is classical,
satisfying the relation y = vt. It was shown by Arsenović et al. [7] that the form
(1) is equivalent to the following integral over transverse momentum of a particle:

ψ(x, t) =
1√
2π

∫ ∞

−∞
dkxc(kx)eikxxe−ih̄k2

xt/2m, (3)

where c(kx) is the Fourier transform of the initial wave function

c(kx) =
1√
2π

∫ ∞

−∞
dxψ(x, 0+)e−ikxx. (4)

The function ψ(x, 0+) is equal to the incident wave function for points x at the
slits and is equal to zero for points x in between the slits. The function c(kx) is
called probability amplitude of particle transverse momentum, or the transverse
wave function in momentum representation.

In the far field the wave function is approximated by [4]:

ψ(x, t) =
√

m

h̄t
e−iπ/4eix2m/2h̄tc

(
x

m

h̄t

)
. (5)

Far from the slits, particle distribution in the far field is proportional to
the momentum distribution, where x m

h̄t plays the role of kx. By evaluating the
quantum mechanical current associated with wave function (5) one concludes that
particle trajectories in the far field are straight lines characterized by the ratio of
a transverse momentum over the momentum along y axis.

For a grating described in Sect. 2, the probability density of transverse
momentum (px = h̄kx) is represented in Fig. 1. Central maximum is the sum of
the central maximum corresponding to the wide slit A and of the central maximum
corresponding to the Ronchi grating B. Two small maxima correspond to the
Ronchi grating.
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Fig. 1. Probability density of transverse momentum for a complex grating described

in Sect. 2.

Fig. 2. Modulo square of a wave function at the distance y = 2 m.

For the same complex grating modulo square of the transverse wave function
at a distance y = 2 m is represented in Fig. 2. Central maxima associated with a
slit and with a Ronchi grating are still separated. But at larger distances these two
maxima overlap and the distribution of x looks like the distribution of transverse
momentum shown in Fig. 1.

4. Probability of particle’s arrivals to a screen

Arsenović et al. [4] proposed a method to evaluate probability density of
particle’s coordinate x at the distance y = vt at time t using the probability den-
sity of particle’s transverse momentum. Particle trajectories are approximated by
straight lines. This approximation is very well justified in the far field, but not
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so well in the near field. It is argued that a particle with transverse momentum
px = h̄kx, which was at a point (x′ = x− h̄kxt/m, y = 0), at time t = 0 arrives to
point (x, y = vt) at time t. One has to integrate over all possible kx and x′. Thus,
the probability of particle’s arrival to point (x, y = vt) at time t is

P (x, y = vt) =
∫ +∞

−∞
dkx

∫ +∞

−∞
dx′|c(kx)|2|ψ(x′, 0+)|2δ(x− x′ − h̄kxt/m).(6)

From the above expression at a distance y = 2 m one finds the distribution repre-
sented in Fig. 3.

Fig. 3. Probability density of particles at a distance y = 2 m evaluated using Eq. (6).

Fig. 4. Probability density at y = 2 m of particles passing through the wide slit A,

only.
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There is a very good agreement with a distribution in Fig. 2, although to
each small maximum in Fig. 2 corresponds a pair of small maxima in Fig. 3. The
pairs are associated with small maxima of the transverse momentum distribution.
But, one maximum of a pair is built by trajectories starting at slits of a Ronchi
grating. Another maximum of a pair is built by trajectories starting at a wide slit.

To evaluate the distribution of particles which are so large that they may
not pass through small slits of a Ronchi grating, but may pass through a wide slit,
we apply the argumentation of Božić et al. [3]. The integration over x′ in (6) is
reduced to integration over wide slit A only. But, the distribution of transverse
momentum of particles which pass through the wide slit remains the one showed
in Fig. 1. It is why we predict that the distribution of large particles should be
as shown in Fig. 4, that means it is influenced by the presence of the Ronchi
grating, despite the fact that particles do not pass through this grating. But, the
wave which is accompanying each particle passes through the wide slit, as well as
through the small slits of a Ronchi grating.

5. Conclusion

It is shown that in an interference experiment with a beam of one per one
Rydberg atom incident on a complex grating (consisting of one wide slit and a
Ronchi grating) one could test the traditional assumption which reads: if a particle
does not pass through a slit its accompanying wave does not pass either.
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[3] M. Božić, D. Arsenović, L. Vušković, Phys. Rev. A 69, 053618 (2004).
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