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We investigate the behavior of counterpropagating optical beam struc-

tures in nematic liquid crystals. We restrict our attention to the dipole–

dipole beam arrangements. A time-dependent model for the beam propaga-

tion and the director reorientation in nematic liquid crystals is numerically

treated in three spatial dimensions and time. Stable dipole beams are ob-

served in a very narrow threshold region of control parameters. Below this

region the beams diffract, above the region spatiotemporal instabilities are

observed, as the input intensity is increased and also as the distance be-

tween the dipole partners is decreased. A transverse beam displacement of

counterpropagating dipole beams is also found. The difference between the

in-phase and out-of-phase components of the dipole is significant, but only

for a smaller distance between the dipole partners.

PACS numbers: 42.65.Tg, 42.65.Sf, 42.70.Df

1. Introduction

Nematic liquid crystals (NLC) exhibit huge optical nonlinearities, owing to
humongous refractive index anisotropy, coupled with the optically-induced col-
lective molecular reorientation. They behave in a fluid-like fashion, but display
a long-range order that is characteristic of crystals [1, 2]. Thanks to the opti-
cally nonlinear, saturable, nonlocal and nonresonant response, NLC have been
the subject of considerable study in recent years, from both theoretical [3, 4] and
experimental points of view [5–10].

In an earlier publication [11] we investigated the propagation of laser beams
in NLC, both in time and in 3 spatial dimensions, using an appropriately developed
theoretical model and a numerical procedure based on the split-step fast Fourier
transform technique. Also, we have presented analysis of the counterpropagating
(CP) beams in Ref. [12], where we have shown that the spatial solitons exist in a
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narrow region of beam intensities, similar to the case of copropagating beams, but
at lower values of the control parameters. Below this region the beams diffract,
above the region the beams display periodic and even chaotic behavior. A nonlocal
nature of the nonlinearity in NLC allows for interesting interaction possibilities
between the two (or more) incoherent beams, or between the components of more
complex multicomponent beam structures. We consider here the propagation and
interactions of more complex structures, such as CP dipole beams. A pair of stable
CP dipole beams is observed in very narrow threshold region of control parameters.
We report a symmetry-breaking intersection and a transverse displacement of CP
dipole beams. By increasing the input beam intensity, spatiotemporal instabilities
are observed. Chaotic behavior is also observed by decreasing the distance between
the dipole partners. Differences between the in-phase and out-of-phase components
of the dipole beam are also investigated.

2. The model

A useful property of NLC is their ability to change optical properties under
the influence of an external electric field, producing a reorientation of the director
tilt angle θ. To describe the evolution of the slowly-varying CP beam envelopes,
linearly polarized along the x axis and propagating along the z axis, we utilize the
paraxial wave equations [4, 5, 8, 9]:

2ik
∂A

∂z
+ ∆x,yA + k2

0εa(sin2 θ − sin2(θrest))A = 0, (1)

−2ik
∂B

∂z
+ ∆x,yB + k2

0εa(sin2 θ − sin2(θrest))B = 0, (2)

where A and B are the forward and the backward propagating dipole beam en-
velopes, k = k0n0 is the wave vector in the medium and εa = n2

e − n2
0 is the

birefringence of the medium.
θrest is the rest distribution of the tilt angle and in the presence of a low-

-frequency electric field. It is modeled by [5, 8]:

θrest(z, V ) = θ0(V ) + [θin − θ0(V )]
[
exp(−z/z̄) + exp

(
−L− z

z̄

)]
, (3)

with θ0(V ) being the orientation distribution due to the applied voltage V far from
the input interface and L is the propagation distance. θin is the director orientation
at the boundaries z = 0 and z = L, and z̄ is the relaxation distance. We allow
for the slow temporal evolution of the angle of reorientation. This evolution is
modeled by the diffusion equation [2, 4]:

γ
∂θ

∂t
= K∆x,yθ +

1
4
εoεa sin(2θ)

(|A|2 + |B|2) , (4)

where γ is the viscous coefficient and K is Frank’s elastic constant. Hence θ is
the overall tilt angle, owing to both the light and the voltage influence. Using the
rescaling z = zkx2

0, x = xx0, y = yx0, and t = tτ , the equations are transformed
into a dimensionless form:
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2i
∂A

∂z
+ ∆x,yA + k2

0x
2
0εa(sin2(θ)− sin2(θrest))A = 0, (5)

−2i
∂B

∂z
+ ∆x,yB + k2

0x
2
0εa(sin2(θ)− sin2(θrest))B = 0, (6)

∂θ

∂t
=

Kτ

γx2
0

∆x,yθ +
ε0εaτ

4γ
sin(2θ)

(|A|2 + |B|2) , (7)

which are then treated numerically in both space and time. Here τ is the relaxation
time and x0 is the transverse scaling length. Equations (5), (6) and (7) form the
basis of the model. By solving these equations we will be describing the beam
propagation in both space and time. The numerical procedure is as in Ref. [12].

3. Numerical results and discussion

Numerical studies of partial differential equations describing beam propaga-
tion in NLC are performed in different conditions and for the CP dipole beams.
The initial fields are two incoherent dipole pairs, launched head-on, with the com-
ponents in-phase or out-of-phase. We increase beam intensity of CP dipole beams
for two different values of the distance between the dipole partners. The effect of
input intensities variation on the dipole beam propagation is presented in Fig. 1.

Fig. 1. Forward dipole beam propagation, shown in the (y, z) plane for different input

intensities (noted in each of the figures, in V2/m2) and for different distances between

the dipole partners: 8 µm (the first row) and 12 µm (the second row). Other parameters

are: εa = 0.5, FWHM = 4 µm and L = 0.5 mm.

For smaller intensities the self-focusing is too weak to keep the beams tightly fo-
cused, so that they cannot get through localized as solitons. By increasing the
beam intensity we achieve stable dipole soliton propagation. For the input inten-
sity I = 1.8 × 1010 V2/m2, during the time of a few τ the dipole partners cross
each other and then remain stable for a larger distance between the partners (the
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Fig. 2. Intensity distribution of the forward dipole beam in the (y, z) plane (the first

row) and the (x, y) plane (the second row), shown at different times. Parameters:

I = 1.8× 1010 V2/m2 and the distance = 8 µm. Other parameters are as in Fig. 1.

Fig. 3. Dipole beam propagation for different phase relations between the beam part-

ners and for different distances (shown in each figure) between them. Other parameters

are as in Fig. 1.

second row). However, for a smaller distance between the partners, they make
an additional transverse displacement after crossing each other (the first row).
Further increasing the input beam intensity (I = 2.5 × 1010 V2/m2) leads to a
dynamically unstable behavior in the case of smaller distances between the dipole
partners. The effect of the variation of the distance of dipole partners is clearly
visible in Fig. 1: a more stable propagation is observed for a larger distance.

One characteristic example from Fig. 1 (the case for I = 1.8× 1010 V2/m2

and the distance = 8 µm) is presented again in Fig. 2, but at different times and
also in the (x, y) plane. At first the dipole partners collapse into one beam, then



Counterpropagating Dipole Beams in Nematic Liquid Crystals 889

produce a dipole beam at the output face of the crystal, by crossing each other
along the crystal, and at the end make an additional transverse beam displacement.
Such a dipole displacement is similar to the displacement of simple CP solitons
seen before [13].

Figure 3 presents the comparison between the propagation of dipole beams
with components that are out-of-phase (the upper row), and in-phase (the lower
row). In the case of components out-of-phase, we notice complex dynamical be-
havior for smaller distances between the dipole partners. For larger distances the
behavior is more stable and very similar for both the in-phase and the out-of-phase
cases.

4. Conclusion

We report, for the first time to our knowledge, on the behavior of CP dipole
beam structures in NLC. We demonstrate the existence of CP dipole beams in a
narrow region of beam intensities. At higher input intensities we see intersection
and irregular dynamics of CP beams. By increasing the distance between the beam
partners, stable structures are observed. Differences between the in-phase and the
out-of-phase components of dipole beams are also investigated. In the case of out-
-of-phase components, we notice complex dynamical behavior for smaller distances
between the dipole partners. The in-phase components of the dipole beam are more
stable.
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