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In this paper, the propagation and behavior of spatial solitons of inho-

mogeneous nonlinear Schrödinger equation in thermal medium will be in-

vestigated analytically. The theoretical model is established by considering

the change of refractive index of medium due to heat deposition of entrance

beam. The soliton like solution in such thermal medium was derived. The

effect of input pump power and beam radius on the behavior of solitons will

be studied finally.
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1. Introduction

The study of electromagnetic waves in nonlinear self-focusing Kerr media
has been one of the considerable recent interests. One of the widely studied in
nonlinear phenomena is the propagation of spatial solitons. A light beam can
form a dielectric waveguide for itself in which the refractive index is greater at
the center of the beam than at its wings. Since the light beam in this self-formed
dielectric waveguide can propagate without spreading the phenomenon of “self-
-trapping” of an optical beam was thereby predicted to occur [1]. One may also
understand this phenomenon as a dynamic balancing of two opposing tendencies,
namely, the tendency for the beam to expand due to dispersion, and the tendency
for the beam to contract due to self-focusing; see e.g. [2]. Spatial solitons are not
only investigated theoretically but they have also been observed experimentally
[3–6]. There are many applications for spatial solitons like pulse compression
[7, 8], optical switching [9], logic devices [10], etc.

The heat deposition in the propagating medium due to input beam can
produce some thermo-optic effects like thermal lensing. Thermal lensing converts
the homogeneous refractive index of medium to inhomogeneous one [11, 12].
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In this paper firstly, the thermal change of refractive index due to thermal
effects for a slab crystal has been obtained. The spatial nonlinear Schrödinger
equation in such inhomogeneous medium then has been derived. After solving
that equation, the effect of input pump power and pump radius on the behavior
of propagation of spatial solitons has been investigated.

2. Thermal lensing model

The steady state heat conducting equation in the medium with thermal con-
ductivity k is [13]:

k∇2T (x, y, z) = −Q(x, y, z), (1)
where Q(x, y, z) is heat power density due to input beam thermal load and
T (x, y, z) is temperature distribution. We consider the slab crystal with dimen-
sions 2b × c × L. The intensity is homogeneous along the Y -direction and in a
length of 2a < 2b along the X-direction in Fig. 1.

Fig. 1. Schematic diagram of end-pumped slab. The pump region area is 2a× c.

By neglecting the pump divergence along the direction of beam propagation,
the total heat load can be written as Q = ηP/2acL in the pump region and Q = 0
in the non-pump region where η is heat generation coefficient. By considering
the two large coolants on the two faces and the direction of heat flow in the X

direction, the solution of Eq. (1) can be written as Tpump = − Q
2kx2 + Ax + B and

Tnonpump = Cx+D, where A, B, C, and D are constants which can be calculated
by the following boundary conditions which are the continuity of the temperature
and the first derivative on the boundary mean Tpump|r=a = Tnonpump|r=a and
dTpump

dx

∣∣∣∣
r=a

= dTnonpump
dx |r=a, respectively, and Newtonians boundary conditions,

k
dTnonpump

dx

∣∣∣
r=b

= h(Tc − Tnonpump

∣∣∣
r=b

, where Tc is the ambient temperature and

h is the convective heat transfer coefficient. After applying the above boundary
condition the temperature distribution in the pump region and outside will be

Tpump = − Q

2k
x2 + Qa

(
1
h

+
b

k
− a

2k

)
+ Tc,

Tnonpump = −Qa

k
x + Qa

(
1
h

+
b

k

)
+ T, (2)
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respectively. The temperature distribution can change the refractive index of
medium. The temperature depending change of refractive index can be written
as [13]:

n(x)− n0 = [Tpump(x)− T0]
dn

dT
, (3)

where T0 is temperature at x = 0 and dn
dT is a thermo-optic characteristic of the

medium. So by inserting Eq. (2) for temperature distribution in the pump region
into Eq. (3) we find

n(x)− n0 =
[
− Q

2k
x2 −Qa

(
1
h

+
b

k
− a

2k

)
+ Tc

]
dn

dT
. (4)

By definition α = −Q
k

dn
dT and β = − [

Qa
(

1
h + b

k − a
2k

)− Tc

]
dn
dT , Eq. (4) can be

rewritten as

∆n(x) = n0 − n(x) =
1
2
αx2 + β. (5)

So due to heat load, the refractive index is inhomogeneous and behaves like a
lens-like medium.

3. Spatial nonlinear Schrödinger equation in inhomogeneous medium

The steady state wave equation in a centrosymmetric nonlinear medium with
considering χ(3) as higher order of susceptibility is

∇2E +
ω2

C2

(
n2

0 + χ(3)|E|2
)

E = 0, (6)

where n0 is refractive index of medium and c is the speed of light. We consider
the polarized electric field solution of Eq. (6) as

E =
1
2
{A(x, z) exp[i(k0z − ωt)] + c.c.}, (7)

where A(x, z) is the envelope amplitude of wave and k0 = n0ω
c is the wave number.

By defining

X = k0x, Z = k0z, q(X, Z) =
√

n2

n0
A(x, z) and n2 =

χ(3)

2n0
, (8)

and then substituting Eq. (7) into Eq. (6) and using Eq. (8) we find

i
∂q

∂Z
+

1
2

∂2q

∂X2
+

∣∣∣q
∣∣∣
2

q = 0. (9)

This dimensionless equation is called the spatial nonlinear Schrödinger equation
and the uniform moving solution can be considered as

q(X,Z) = ηsech (η(X + vZ −X0)) exp
(
−i

(
vX +

1
2
(v2 − η2)Z

))
, (10)

where v is the velocity of the soliton, η is amplitude and X0 is constant. Now
we suppose the refractive index of medium is inhomogeneous and consider the
inhomogeneous refractive index as n0+∆n(X), in which n(X) ¿ n0. By neglecting
∆n(X)2, and by using the steady state wave equation and Eqs. (7) and (8), we
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find

i
∂q

∂Z
+

1
2

∂2q

∂X2
+

∣∣∣q
∣∣∣
2

q = V (X)q, (11)

where V (X) = −∆n(X)/n0k
2. In analogy with the homogeneous Schrödinger

equation, the spatial solution can be assumed to have the following form:

q(X,Z) = ηsech
(
η(X − X̄(Z))

)
exp (iG(Z)X + H(Z)) , (12)

where X̄(Z) is the average location of soliton in X direction. By inserting the
above equation in Eq. (11), after separating the real and imaginary parts, we
obtain two equations in the following forms:

dX̄(Z)
dZ

= G(Z), (13)

X
dG(Z)

dZ
+

dH(Z)
dZ

+
1
2
G2(Z) + V (X)− 1

2
η2 = 0. (14)

By derivation of Eq. (13) with respect to Z and Eq. (14) with respect to X we
find the dynamic behavior of average location of solitons as

d2X̄(Z)
dZ

= −dV (X̄)
dX̄

. (15)

The above equation is Newtonian’s like second law.
According to Eq. (5), and by introducing ᾱ = α/n0k

4, and β̄ = β/n0k
2, the

potential in average location of soliton will be

V (X̄) = −1
2
ᾱX̄2 + β̄. (16)

So by using Eqs. (15) and (16) we find

X̄(Z) = A1 sin
√

ᾱZ + A2 cos
√

ᾱZ, (17)

G(Z) = A1

√
ᾱ cos

√
ᾱZ −A2

√
ᾱ sin

√
ᾱZ, (18)

H(Z) =
−3
8
√

ᾱ sin(2
√

ᾱZ)(A2
2 −A2

1)−
3
α

√
ᾱA1A2 cos(2

√
ᾱZ)

+
1
4
Zᾱ(A2

2 + A2
1) +

1
2
Z(1− ᾱX2) + A3, (19)

where A1, A2, and A3 are constant values defined with initial conditions.

4. Results

Based on the theoretical results, we used a typical crystal slab with dimen-
sions 2b = 10 mm, c = 20 mm and L = 100 mm. The thermal conductivity is
0.13 W/(cm K) and the coolant temperature has been considered as Tc = 300 K.
Figures 2a,b show the beam intensity for a 10 W input beam with a = 0.5 mm (a)
and a = 1 mm (b). As shown in these figures, for such input pump regime, the
pump radius does not influence the behavior of the solitons in the medium.

Figures 3a,b show the beam intensity in the medium for a 50 W input beam
with (a) a = 0.5 mm and (b) a = 1 mm. As shown the effect of the pump radius in
the behavior of soliton is more pronounced by increasing the input pump power.
The decreasing beam radius gives the increase in the variation of the beam along
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Fig. 2. Beam intensity for 10 W input power with (a) a = 0.5 mm and (b) a = 1 mm.

Fig. 3. Beam intensity for 50 W input power with (a) a = 0.5 mm and (b) a = 1 mm.

Fig. 4. Beam intensity for 100 W input power with (a) a = 0.5 mm and (b) a = 1 mm.

the X axis in the medium for such input power. Figures 4a,b show the beam
intensity of the soliton for 100 W and (a) 0.5 mm beam radius and (b) 1 mm.
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By comparing Figs. 2a, 3a, and 4a it is obvious that the variation of soliton along
X-axis will be more pronounced in high-power regime.

5. Conclusions

In this paper, we investigated the spatial soliton of nonlinear Schrödinger
equation in the inhomogeneous refractive index medium. The influence of input
power and radius on the behavior of spatial solitons is studied analytically. We
showed that the influence of input beam radius on the behavior of soliton is more
noticeable in high-power regime with respect to low-power one. For wider beam
the effect of input power is smaller and can be neglected.

References

[1] R.Y. Chiao, E. Garmire, C.H. Townes, Phys. Rev. Lett. 13, 479 (1964).

[2] R.Y. Chiao, in: Spatial Soliton, Eds. S. Trillo, W. Torruellas, Springer-Verlag,

Berlin 2001, p. 1.

[3] J.S. Aitchison, A.M. Weiner, Y. Silberberg, M.K. Oliver, J.L. Jackel, D.E. Leaird,

E.M. Vogel, P.W. Smith, Opt. Lett. 15, 471 (1990).

[4] J.S. Aitchison, Y. Silberberg, A.M. Weiner, D.E. Leaird, M.K. Olivier, J.L. Jackel,

P.W.E. Smith, J. Opt. Soc. Am. B 8, 1290 (1991).

[5] A. Barthelemy, S. Maneuf, C. Froehly, Opt. Commun. 55, 201 (1985).

[6] R. De La Fuente, A. Barthelemy, C. Froehly, Opt. Lett. 16, 793 (1991).

[7] M.M. Cerimele, M.L. Chiofalo, F. Pistella, S. Succi, M.P. Tosi, Phys. Rev. E 62,

1382 (2000).

[8] D.H. Reitze, A.M. Weiner, D.E. Leaird, Opt. Lett. 16, 1409 (1991).

[9] J. Scheuer, M. Orenstein, Opt. Lett. 24, 1735 (1999).

[10] G. Cancellieri, F. Chiaraluce, E. Gambi, P. Pierleoni, J. Opt. Soc. Am. B 12,

1300 (1995).

[11] W.K. Koechner, D.K. Rice, Appl. Opt. 9, 2548 (1970).

[12] H. Nadgaran, P. Elahi, PRAMANA-J. Phys. 66, 513 (2006).

[13] W. Koechner, Solid-State Laser Engineering, 5th ed., Springer-Verlag, Berlin

1999.


