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Analytical and numerical investigation of the propagation of “necklace-

-ring” optical beams in Kerr-like saturable photorefractive media with

square-root nonlinearity is carried out. Analytic expression for the propa-

gation dynamics of the necklace beams is in good agreement with numerical

findings.
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1. Introduction
Progress in generating spatial optical solitons in nonlinear (NL) bulk media

opens the possibility of intense study of two-dimensional (2D) interaction and self-
trapping of light beams [1]. Recently, very interesting soliton structure in the form
of azimuthally periodically modulated beams (“necklace beams”) was reported in
[2, 3]. Self-trapped necklace beams can exist in a homogeneous bulk NL optical
medium, exhibiting quasi-stable expansion even in a self-focusing NL medium
[2–4]. Because of zero angular momentum they do not rotate during propagation.
In this paper, we investigate propagation of necklace-ring optical beams in Kerr-
like saturable photorefractive (PR) media with square-root nonlinearity.

We utilize an isotropic model of PR media with a local interaction of beams
that is especially suitable for transverse 2D geometries. The model developed in
[5, 6] contains a more realistic expression for the PR space-charge field of the
form ESC = E0/

√
1 + I, where E0 is the transverse dc electric field applied to

the PR crystal, and I is the total beam intensity measured in units of the dark
or background intensity. The square-root intensity dependence represents more
accurately the most relevant isotropic contribution to the space-charge field and
constitutes an improved model to be used for describing the propagation of (2+1)D
spatial screening solitons. It offers more accurate results in comparison to the
straightforward generalization of the 1D formula 1/(1 + I), which is used by most
of authors. In addition, it leads to improved stability of propagating complex
optical structures and longer propagation distances [7].
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2. Theory

The equation for the slowly varying optical field envelope ψ can be written
in the form of the general dimensionless NL Schrödinger equation

i
∂ψ

∂z
+ ∆⊥ψ − 1√

1 + |ψ|2 ψ = 0, (1)

where ∆⊥ is the transverse Laplacian and z is the propagation distance, measured
in the units of the diffraction length LD. Following the standard procedure, the
action of the root model is easily found

S =
∫ ∞

−∞

[
i
2

(
ψ

∂ψ∗

∂z
− c.c.

)
+

∣∣∣∇⊥ψ
∣∣∣
2

+ 2
√

1 + |ψ|2
]

dxdydz. (2)

We utilize this quantity in describing the propagation of necklace-ring optical
beams in the medium. The procedure is to determine optimal parameters for
different beam structures utilizing variational principles, then launch optimized
beams into the medium, and observe the subsequent behavior.

Following the idea and notation given in [3], we consider a necklace beam
described by an input ansatz

ψ(r, θ, z) =
α(z) cos(Ωθ)e−iΓ(z)z+iv(z)r

cosh(a(z)(r − L(z)))
, (3)

where α is the amplitude, Ω is a half of the number of the pearls, 1/a is the ring
thickness, and L is the necklace radius. Necklace radius is large compared to radial
thickness (L À 1/a); another parameter restriction is necklace stability require-
ment Ω À Lπa/4 [3]. The main quantity characterizing a spatial soliton is its
power E =

∫ ∫ |ψ|2dxdy = 2πα2L/a, which is dimensionless here, and represents
an integral of motion. Because of the energy conservation relation, the only param-
eters to be optimized are α(z), L(z), and v(z). Optimal values of these parameters
can be found from the principle of minimum action. Propagation of necklace beam
with initial shape given by Eq. (3), whose parameters are determined by the least
action principle, is shown in Fig. 1.

Fig. 1. Example of typical evolution of a necklace beam: the necklace slowly expands

during propagation. For all plots, the (transverse) axes are the same.

We substitute the ansatz (3) into the relation for the action (Eq. (2)), and
integrate the resulting expression in transverse directions in the manner described
in [3], which yields
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S =
∫ ∞

−∞
dz

[∂v

∂z
LE − E

∂(Γz)
∂z

+ v2E +
4π2α4L2

3E
+

Ω2E

L2

+
∫ 2π

0

dθ

∫ ∞

0

rdr2
√

1 + ψψ∗
]
. (4)

One can notice that only the last term must be solved approximately.

3. Small amplitude approximation

First, we consider a small amplitude approximation. In this case
√

1 + ψψ∗ ≈
1 + |ψ|2

2 − |ψ|4
8 , and action is given by

S =
∫ ∞

−∞
dz

[
∂v

∂z
LE − E

∂(Γz)
∂z

+ v2E +
4π2α4L2

3E
+

Ω2E

L2
+ E − α2E

8

]
.(5)

The minimization of the action ∂S/∂α = ∂S/∂L = ∂S/∂v = 0 gives next relations:

α2 =
3
64

E2

π2L2
, 2

∂v

∂z
=

4Ω2 − 3E2/256π2

L3
, and

∂L

∂z
= 2v.

From the first relation it follows a =
√

3
4 α; using additional two relations we find

the following expression for the necklace radius L:

L(z) =

√[
1
L2

0

(
4Ω2 − 3

256
E2

π2

)
+ 4v2

0

]
z2 + 4L0v0z + L2

0, (6)

where the subscript zero denotes the initial conditions at z = 0.
We execute a series of numerical simulations of different necklaces, using a

beam propagation method based on the fast Fourier transform technique. We find
excellent agreement between observed numerical necklace-ring dynamics and our
analytical analysis founded on the least action principle (Fig. 2).

Fig. 2. Necklace radius as a function of propagation distance in the small amplitude

approximation: comparison between numerical beam–propagation results and analytical

predictions. Input necklace parameters: α = 0.1, a = (
√

3/4)α = 0.0433, L = 100,

Ω = 20.
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4. Large amplitude approximation

Next, we consider a large amplitude approximation. In this case√
1 + ψψ∗ ≈ |ψ|, and action is given by

S =
∫ ∞

−∞
dz

[
∂v

∂z
LE − E

∂(Γz)
∂z

+ v2E +
4π2α4L2

3E
+

Ω2E

L2
+

4E

α

]
. (7)

The minimization of the action ∂S/∂α = ∂S/∂L = ∂S/∂v = 0 gives next relations:

α5 =
3
4

E2

π2L2
, 2

∂v

∂z
=

4Ω2

L3
− 4

(
4π2

3E2

)1/5 1
L3/5

≈ 4Ω2

L3
, and

∂L

∂z
= 2v.

The second term in the second relation can be neglected because it is much
smaller than the first, as a consequence of the necklace stability requirement
L À 1/a À Lπ/4Ω . From the first relation it follows a =

√
3/α; using addi-

tional two relations we find the following expression for the necklace radius L:

L(z) =

√(
4Ω2

L2
0

+ 4v2
0

)
z2 + 4L0v0z + L2

0. (8)

Fig. 3. Necklace radius as a function of propagation distance in the large amplitude

approximation: comparison between numerical beam–propagation results and analytical

predictions. Input necklace parameters: α = 10, a =
√

3/α = 0.548, L = 10, Ω = 20.

We execute a series of numerical simulations, as before. We find excellent
agreement between the observed numerical necklace-ring dynamics and our ana-
lytical analysis (Fig. 3).

5. Conclusion

We investigated analytically and numerically propagation of necklace-ring
optical beams in Kerr-like saturable photorefractive media with square-root non-
linearity. We obtained analytic expressions for the propagation dynamics of the
necklace beams in small/large amplitude approximations, in good agreement with
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numerical simulations. Results in this paper open possibilities for investigation of
interaction-collision phenomena between self-trapped necklaces and other solitons.
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