
Vol. 112 (2007) ACTA PHYSICA POLONICA A No. 5

Proceedings of the International School and Conference on Optics and
Optical Materials, ISCOM07, Belgrade, Serbia, September 3–7, 2007

Stable One-Dimensional Dissipative

Solitons in Complex Cubic-Quintic

Ginzburg–Landau Equation

N.B. Aleksica,∗, G. Pavlovicb, B.N. Aleksicc

and V. Skarkad

aInstitute of Physics, Pregrevica 118, 11001 Belgrade, Serbia
bFaculty of Physics, University of Belgrade, Serbia

cFaculty of Electrical Engineering, University of Belgrade, Serbia
dLaboratoire POMA, UMR 6136 CNRS, University of Angers

2, Boulevard Lavoisier, 49045 Angers, France

The generation and nonlinear dynamics of one-dimensional optical dis-

sipative solitonic pulses are examined. The variational method is extended

to complex dissipative systems, in order to obtain steady state solutions of

the (1 + 1)-dimensional complex cubic-quintic Ginzburg–Landau equation.

A stability criterion is established fixing a domain of dissipative parameters

for stable steady state solutions. Following numerical simulations, evolution

of any input pulse from this domain leads to stable dissipative temporal soli-

tons. Analytical predictions are confirmed by numerical evolution of input

temporal pulses towards stable dissipative solitons.

PACS numbers: 45.65.Sf, 45.65.Tg

1. Introduction

The possibility of generating soliton structures in nonlinear media is of con-
siderable interest due to potential applications in all-optical information processing
and transport. In telecommunication, temporal solitons are carriers in dispersion
compensated optical fiber transmission systems [1, 2]. Bright temporal soliton is
generated compensating anomalous group dispersion by cubic (Kerr) nonlinearity.
Such a few-parameters family of solitons is well described by (1 + 1)-dimensional
nonlinear Schrödinger equation; one transverse dimension corresponds to the time
t and the propagation coordinate is z [3]. A prerequisite to establish a bridge be-
tween the theory and the experiment is to consider real systems that are generally
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dissipative. In such systems, the solitonic structure can be preserved if appropriate
gains match linear and nonlinear losses [4]. In order to stabilize this dissipative
soliton the saturating nonlinearity containing also a quintic term of opposite signs
is required. As a consequence, the few-parameters family of solutions is reduced
to a one fixed solution for a given set of dissipative parameters. Here we investi-
gate one-dimensional complex cubic-quintic Ginzburg–Landau equation (CQGLE)
describing various dissipative systems. Except for particular sets of parameters,
there are no exact analytical solutions of CQGLE [5]. Such complex systems are
treated mainly numerically [4]. However, in order to have a better physical insight
into the problem, an analytical approach even though approximate is needed. We
extended the variation approach to complex Ginzburg–Landau equation [6]. Based
on this variational approach an analytical stability criterion for steady state solu-
tions of Ginzburg–Landau equation is obtained. If such stable solutions are taken
as input for numerical simulations, they evolve into solitons. We demonstrate that
numerical evolution always leads to stable dissipative one-dimensional solitons.
The stability domain of dissipative parameters is established for various types of
dissipative temporal solitons.

2. Formulation of the problem

The (1 + 1)-dimensional complex CQGLE for the normalized complex field
envelope E, contains a Laplacian describing the anomalous group velocity disper-
sion in time t

i
∂E

∂z
+

1
2

∂2E

∂t2
+ |E|2E + v|E|4E = Q, (1)

Parameter v is negative. Without lost of generality we take v = −1. Terms
denoted by Q are all dissipative

Q = iδE + iε|E|2E + iµ|E|4E + iβ
∂2E

∂t2
. (2)

The stability of the pulse background involves the linear loss, thus, the parameter
δ must be negative [7]. Parameters ε and µ are associated respectively with cubic
and quintic gain-loss terms. Last term in Eq. (2) corresponds to spectral filtering.
Thus, a simultaneous balance of dispersion with self-focusing and gain with loss is
the prerequisite for generation of dissipative temporal solitons.

In order to establish the variational approach for CQGLE we construct the
trial function

E = A exp
(
− (t− a)2

2T 2
+ iC(t− a)2 + iV (t− a) + iΨ

)
. (3)

Such a trial function is the functional of amplitude A = A(z), temporal pulse
widths T = T (z), wave front curvatures, i.e., chirp C = C(z), frequency shift
corresponding to “speed” of a pulse “moving in time” V = V (z), coordinate of
the field maximum a = a(z) and phase Ψ = Ψ(z). Each of these functions is
optimized giving one of six Euler–Lagrange equations averaged over coordinate t:
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d
dz

(
∂Lc

∂η

)
− ∂Lc

∂η
= Qn ≡ 2<

∫
Q

∂E∗

∂η
dt, (4)

where the real part is labeled <. The conservative Lagrangian

Lc =
i
2

(
E

∂E∗

∂z
− E∗ ∂E

∂z

)
+

1
2

∣∣∣∂E

∂t

∣∣∣
2

− |E|4
2

+
|E|6
3

(5)

is averaged Lc =
∫
Lcdt. This averaged Lagrangian reads

Lc =
[
Ψ ′ +

1
2
(C ′ + 2C2)T 2 − V a′ +

1
4T 2

− A2

2
√

2
+

A4

3
√

3
+

V 2

2

]
P, (6)

where prime indicates a derivative with respect to the coordinate z. The beam
power P =

√
πA2T is no more conserved in dissipative systems as can be seen

from the variation with respect to the phase [3, 6]. The right hand side of the
corresponding Euler–Lagrange Eqs. (4) contains all dissipative terms.

Within variational approximation, to the partial differential CQGLE corre-
sponds a set of six coupled first-order differential equations (FODE):

dA

dz
= δA +

5
4

ε

T 2∗A2∗
A3 +

µ

T 2∗A4∗
A5 − β

A

T 2
− CA− βV 2A ≡ A, (7)

dT

dz
= 2TC − ε

2T 2∗A2∗
TA2 − µ

2T 2∗A4∗
TA4 +

β

T
− 4βT 3C2 ≡ T, (8)

dC

dz
= −2C2 +

1
2T 4

− 1
2T 2∗A2∗

A2

T 2
+

1
2T 2∗A4∗

A4

T 2
− 4

β

T 2
C ≡ C, (9)

dV

dz
= −2

β

T 2
(1 + 4C2T 4)V ≡ V, (10)

da

dz
= V (1− 2βCT 2) (11)

and
dψ

dz
= − 1

2T 2
+

5
4T 2∗A2∗

A2 − 1
T 2∗A4∗

A4 +
V 2

2
+ 2βC(1− 2V 2T 2), (12)

where A∗ = 33/4/25/4 and T∗ = 2
√

2/33/4.
The steady state solutions are obtained from Eqs. (7)–(10) for right hand

side equal to zero A = T = C = V = 0. Expanding the steady state with
respect to the largest of small dissipative parameters θ = max(|β|, |δ|, |ε|, |µ|, )
we obtain the amplitude A = A0 + O(θ2), temporal width T = T0 + O(θ2),
and chirp C = C1 + O(θ3). As in the conservative systems, the temporal width
T0 = T∗A2

∗/(A0

√
A2∗ −A2

0), power P0 = (
√

πT∗A2
∗)A0/

√
A2∗ −A2

0 and propaga-
tion constant Ω = dψ/dz = A2

0(3 − 2A2
0/A

2
∗)/(4A2

∗T
2
∗ ) + O(θ2) depend only on

the amplitude [4, 6]. Variationally obtained families of conservative steady state
solutions reduce to a fixed double solution for a given set of dissipative parameters.
Indeed, we get the steady state amplitude having two discrete values A+ and A−:
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A±0 = A∗

√
(β − 2ε)±

√
(β − 2ε)2 − 4δT 2∗ (3µ + 2β)

3µ + 2β
< A∗. (13)

If ε < εc = β/2 − 2δT 2
∗ solution A+

0 exists in the region µ > µ2 and µ > µ1 for
ε > εc where µ1 = (β− 2ε)2/12δT 2

∗ − 2β/3 and µ2 = −4(ε+ δT 2
∗ )/3. The solution

A−0 exists only for ε > εc and µ1 < µ < µ2. A double solution (A−0 > A+
0 ) exists

for a cubic gain (ε > 0) and a quintic loss (µ < 0) in the (ε, µ) domain between µ1

and µ2 in Fig. 1. The striking difference with conservative systems is the nonzero
wave front curvature [6, 7]:

Fig. 1. Analytically (solid lines) and numerically (dashed lines) obtained domain of

stability of steady states.

C =
1

4T 2∗A4∗
A2

0[(ε− 2β)A2
∗ + (µ + 2β)A2

0] (14)

and zero value of “speed” V = 0, for β 6= 0.

3. Stability analysis

To be a soliton a steady state solution must be stable. In order to check the
stability of solutions, we applied our stability criterion based on the variational
approach and the method of Lyapunov exponents for Eqs. (7)–(10) [8]. The Jacobi
matrix is built from derivatives of termsA, T, C, andV with respect to amplitude
A, widths T , curvatures C and “speed” V , taken in steady state. Eigenvalues of
Jacobi matrix are determined by equation

(λ3 + α1λ
2 + α2λ + α3)(λ + α4) = 0, (15)

where

α1 = 3A2
0[(11µ− 8β)A2

0 + (8β − 2ε)A2
∗]/(4T 2

∗A4
∗) +O(θ2),

α2 = A4
0(A

2
∗ −A2

0)/(A6
∗T

4
∗ ) +O(θ2), α4 = 2β/T 2

0 +O(δ2
0)

and

α3 = A6
0(A

2
∗ −A2

0)[4A4
∗(β − 2ε) + 2(9µ− 6β + 4ε)A2

∗A
2
0



Stable One-Dimensional Dissipative Solitons . . . 945

+(8β − 33µ)A4
0]/(2T 6

∗A12
∗ ) +O(θ2).

Following Lyapunov’s method, the steady state solutions of four coupled FODE
(7)–(10) are stable if and only if the real part of solutions λ of equation are nega-
tive [8]. This is fulfilled when the Hurwitz conditions are satisfied: α2 > 0, α3 > 0,
α123 = α1α2 − α3 > 0 and α4 > 0. The last condition is crucial and it is realized
when β > 0. The condition α2 > 0 is always satisfied for stationary solutions
A±0 < A∗. However, only the solutions A− satisfy α3 > 0 and α123 > 0 for θ < 1.
As a consequence, in the (ε, µ) domain in Fig. 1 only A− solution is stable. The
stability criterion for steady state solutions of CQGLE is explicitly expressed as

β > 0, (16)

ε > β/2− 2δT 2
∗ (17)

and

(β − 2ε)2/12δT 2
∗ − 2β/3 < µ < −4(ε + δT 2

∗ )/3. (18)
Solving exactly but parametrically Eqs. (7)–(10) and using Hurwitz’s conditions
the exact curve for αe

3 is drawn in Fig. 1 limiting the domain of dissipative pa-
rameters for stable stationary states. In order to check the validity of analytical
prediction of the domain of stable steady states solutions based on the stability
criterion Eqs. (7)–(10), numerical simulations of Eq. (1) was performed taking
as input dissipative parameters from this domain. Although such initial states
are not yet solitons, the system will after some evolution self-organize into stable
dissipative temporal soliton.

Fig. 2. Numerical (squares) and analytical (solid line) bifurcation curve of amplitude

A versus parameter ε.

Starting from Gaussian pulse instead of stable steady state is equivalent to
perturbation of the soliton with respect to the amplitude, width, curvature, and
frequency shift. Taking into account that the dissipative soliton is exceptionally
robust, such perturbations will be damped, bringing the system back to solitonic
solution which corresponds to the dynamical equilibrium. Such an evolution cor-
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responds to the transition from the stable branch of the variational bifurcation
curve to the numerical bifurcation curve in Fig. 2.

In order to test the robustness by numerical simulations of Eq. (1), an input
Gauss pulse is chosen from the stable region of material parameters, with finite
initial “speed”, and no initial curvature. The initial frequency shift will produce
a pulse drift following time axis (see Fig. 3a).

Fig. 3. Evolution of the Gauss pulse for: δ = −0.01, ε = 0.2, µ = −0.3, C = 0, V = 0.1;

β = 0.02 (a) and β = 0 (b).

However, such a shift is damped to zero since the steady state has always
V = 0 as can be seen from Eq. (10). If now the parameter β is zero keeping all
other parameters the same, the simulations show an undamped drift (see Fig. 3b).
Indeed, for β = 0, α4 cannot be positive. Therefore, Hurwitz’s conditions are
not satisfied. As a consequence, in order to have the stable stationary state, the
parameter β must be larger than zero.

4. Conclusion

The stability of soliton solutions of (1 + 1)-dimensional cubic-quintic
Ginzburg–Landau equations was studied using variational approach. A stability
criterion was established using Hurwitz’s conditions not only for the amplitude,
width, and curvature, but also for the frequency shift although it is not present
in steady states. Based on such a criterion, a stability domain of dissipative pa-
rameters is established. Any pulse from this domain taken as the input for the



Stable One-Dimensional Dissipative Solitons . . . 947

numerical simulations will during propagation self-organize into stable dissipative
temporal soliton playing the role of an attractor. It is demonstrated that the co-
efficient β of the spectral filtering dissipative term in Eq. (1) must be positive in
order to have the stability.
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