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Cloaking devices designed using the coordinate transform approach were

shown to be realizable, at least in principle, within the realm of electromag-

netic metamaterials. In this paper we investigate the strictness of conditions

imposed on the parameters of metamaterial cloaks by calculating the degree

of wave scattering when those parameters have variations with respect to

theoretically ideal values. A simple idea is used to obtain analytic results for

the case of the nonideal two-dimensional cloaking cylinder. Also, results of

realistic finite element simulations of the Helmholtz equation are presented

and it is found that they are in excellent agreement with the analytic results.
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1. Introduction

The advent of metamaterials over the past several years has refueled the
interest in electromagnetics for various structures having unusual values of ε and
µ. Negative refraction [1], superlensing [2], and electromagnetic cloaking [3–6]
are only few of the many exciting phenomena expected within the domain of
metamaterials [7].

The idea of cloaking devices based on the coordinate transform design, re-
cently suggested in [3], has been shown to be the most versatile one amongst
several other invisibility ideas [6, 8–10]. The recent article [11] from Leonhardt
is a beautiful demonstration of how the remarkable phenomena associated with
metamaterials can be unified within the framework of general relativity.

So far, most of attention regarding these cloaking devices has been given to
2D structures, since they are much easier to manufacture than 3D ones. However,
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in the 2D case, the theory suggests that the material parameters of the cloaking
shell should have singular values on their inner surface. Our intention in this paper
is to investigate what happens when finite values of the material parameters are
used.

2. The imperfect cloaking device

We consider an infinite 2D cloaking cylinder [4]. Cylindrical coordinates are
employed for both the “physical” space, (r, ϕ, z), and the “transformation”space,
(ρ, ϕ′, z′). The “physical” space is where we have the actual metamaterial cloak
with permittivity and permeability tensors ε and µ, while in the “transformation”
space the transformed material parameters labeled ε′ and µ′ are obtained. In
case of ideal cloak, here should be only vacuum, i.e. the ideal cloak has ε′ = 1
and µ′ = 1. The recipe for obtaining ε′ and µ′ from ε and µ (or vice versa)
when the mapping between the “physical” and “transformation” space is defined,
is discussed in [3, 11, 12].

The structure to be considered consists of the cloaking device, occupying the
volume R1 < r < R2, and the cloaked object which is inside r < R1. We consider
the mapping from the “transformation” space defined by r = g(ρ), ϕ = ϕ′ and
z = z′ with g(ρ) given by

g(ρ) = ρR1/ρ1, for ρ < ρ1,

g(ρ) = αρ + β, for ρ1 ≤ ρ < R2,

g(ρ) = r, for ρ > R2, (1)
with α = (R2 −R1)/(R2 − ρ1) and β = R2(R1 − ρ1)/(R2 − ρ1). Clearly, the case
with ρ1 = 0, is the case of the ideal cloak [4] having the relative permittivity and
permeability given by

µId
r = (r −R1)/r, µId

ϕ = 1/µId
r ,

µId
z = µId

r /αId, αId = (R2 −R1)/R2 (2)
with ε = µ. The problem with these parameters is that they all have singular
values at the boundary r = R1, meaning that the value of µId

r has to be precisely
zero. To analyse an imperfect cloak we assume that the deviations have precisely
the values corresponding to the case of finite ρ1. The parameters of the cloak are
then shown to be given by

µr = (r − β)/r, µϕ = 1/µr, µz = µr/α2, (3)
and there are no singular material parameters since β < R1. For a given cloaking
device, this procedure will not give exact solutions for the scattering, but it allows
for a fairly good estimate of the cloaking performance if the expected deviations
are known in advance, e.g. if δµr = µr − µId

r is taken to be representative, we put

µr(r = R1) = δµr → ρ1 =
R1R2δµr

R2 −R1(1− δµr)
. (4)

The solution for the scattering on such a cloaking device is easily obtained in
the “transformation” domain where the material properties for ρ < ρ1 are given by
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ε′r = ε, µ′r = µ, ε′ϕ = ε, µ′ϕ = µ, ε′z = γ2ε, µ′z = γ2µ,

γ = R1/ρ1, (5)
where we have assumed, for the sake of simplicity, that the cloaked object is
isotropic with parameters ε and µ. Outside the volume, i.e. for ρ > ρ1, in the
“transformation” space, there is only vacuum, since we assume that the cloak
material conditions are exactly met in the “physical” space.

In the present case, a 2D problem with diagonal ε′ and µ′, the solutions
for the wave equation are split to transverse electric (TE) waves with the electric
field along the z-axis, and transverse magnetic (TM) waves, with the magnetic
field along the z-axis . Since any result for the TE waves can be converted to the
corresponding result for the TM waves, with the change E ↔ H and ε ↔ −µ, we
shall consider only TE waves. We label the z-component of the electric field of the
TE wave in the “transformation” space with Ēz, so the TE Helmholtz equation
(E(t) ∼ exp(−iωt) is assumed) reads

1
ρ

∂

∂ρ

(
ρ
∂Ēz

∂ρ

)
+

1
ρ2

∂2Ēz

∂ϕ′2
+ k2Ēz = 0, (6)

where k2 = k2
c = µεγ2k2

0, for ρ < ρ1, and k2 = k2
0, for ρ > ρ1.

The problem of plane wave scattering on an infinite cylinder is a standard
one in the scattering theory [13]. Our approach is valid for any type of the hidden
object, however to keep it short, we assume that the hidden object is a perfect
electric conductor (for a more detailed analysis see [14]), allowing for simpler re-
sults. It is evident that the cloaking shell effectively shrinks our metallic cylinder
to the cylinder with the same parameters but with smaller radius, i.e. from R1 in
the “physical” space to ρ1 in the transformation space. Therefore, the scattering
field, Ēs

z, in the “transformation” space is given by

Ēs
z = E0

∞∑
n=−∞

exp(inϕ̃)anH(1)
n (k0ρ),

ϕ̃ = ϕ− ϕk + π/2, n = 0,±1,±2, . . . (7)
where ϕk is the direction of the incident plane wave with respect to x-axis, H

(1)
n is

the Hankel function of the first kind and the scattering coefficients, an, are given
by

TE: aTE
n = − Jn(k0ρ1)

H
(1)
n (k0ρ1)

, TM: aTM
n =

Jn+1(k0ρ1)− Jn−1(k0ρ1)
Hn−1(k0ρ1)−Hn+1(k0ρ1)

. (8)

The solution for Ēs
z in the “transformation” space can be transformed to obtain

the solution in the “physical” space. We are interested mostly in the fields outside
the cloak, ρ > R2, and here the fields in both spaces are exactly the same. Having
established the solutions for the imperfect cloak, which has non-singular values for
the material parameters, we now investigate the ρ1 → 0 limit. In this case, the
scattering coefficients, an, are given as
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aTE
0 → iπ

2 ln(k0ρ1)
and aTE

n → − iπ
22nn!(n− 1)!

(k0ρ1)2n, n ≥ 1, (9)

for TE waves, and

aTM
0 → iπ

4
(k0ρ1)2 and aTM

n → iπ
22nn!(n− 1)!

(k0ρ1)2n, n ≥ 1, (10)

for TM waves. Hence, each of the scattering coefficients an decays and our imper-
fect cloak approaches the ideal one. From the equations above, we see that the
convergence of the zeroth order scattered TE cylindrical wave on the hidden ideal
electrical conductor is by far the slowest which explains the isotropic scattering on
the cloaking device mentioned in [4].

3. Numerical results

To illustrate the performance of an imperfect cloak, we shall take that
λ0 = 0.25 (these are arbitrary units, e.g. meters), R1 = λ0, R2 = 2λ0, assume
that the imperfection of the cloak parameters is determined by δµr at r = R1, as
described in the previous section, and take that the hidden object is an ideal elec-
tric conductor. Then, we quantify the quality of the cloak, q, with the factor by
which the actual scattering width, d0

s , of the hidden object is decreased, q = d0
s/ds

with ds being the scattering width with the cloak. The scattering width, defined
as the ratio of the scattered flux and the incoming power flux density (per length)
for the cylinder without the cloak is found to be d0

s ≈ 1.145. When the cloak is
present, the a0 scattering coefficient dominates, which is confirmed by our finite
element (FE) simulations given below, so we have

q ≈ 2.29 ln2(k0ρ1(δµr))/πλ0. (11)
From (4) we obtain that in order to achieve an electromagnetic “shrinking”

by 10, i.e. q = 10, we need to control the material parameter δµr within approxi-
mately 0.01. Having in mind that values of ε and µ below unity imply superluminal

Fig. 1. FE simulation results. Smaller circle is the inner boundary of the cloak, R1 =

λ0 = 0.25, and the bigger circle is the external cloak boundary R2 = 2λ0. The simulation

was carried out for ρ1 = 0.02.
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Fig. 2. Dependence of ds on ρ1, comparison of analytic and FE results.

phase velocities and, thus, strong material dispersion, such stringent conditions on
ε and µ as indicated above, mean that the band width within which the cloaking is
effective is going to be very narrow (which is easily estimated given the particular
dispersion formula). Also, since ln2(k0ρ1) goes to infinity when δµr → 0, the curve
q(δµr) is very steep for q > 10, so even a small increase in δµr will significantly
decrease the value of q.

Figure 1 shows the scattered field obtained by our FE simulations for the
case of cloak with ρ1 = 0.02 and incident TE wave. The square drawn inside
the simulation domain, represents the contour along which the power flux density
was integrated to obtain the FE result for the scattering width. The results were
compared to the values of ds calculated analytically, and this is shown in Fig. 2.

The mesh element size used in FE simulations was around λ/10, meaning
that the simulated structure roughly corresponds to a metamaterial with the unit
cell size of λ/10, which is a typical value. The good agreement with FE simulations
confirms our assumption that most of the scattering comes from the part of cloak
with r ≈ R1.

4. Conclusion

Simple analytic results for estimating the cloaking performance (scattered
field and scattering width) are presented. On the example of a thin cylinder made
of ideal electrical conductor we have shown that the best it can be expected from
a realistic cloaking shell is that it decreases its scattering width by around one
order of magnitude and it is for the shell of thickness comparable to the radius of
the concealed object.
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