
Vol. 112 (2007) ACTA PHYSICA POLONICA A No. 5

Proceedings of the International School and Conference on Optics and
Optical Materials, ISCOM07, Belgrade, Serbia, September 3–7, 2007

Dissipative Optical Solitons
V. Skarka

Laboratoire POMA, UMR 6136 CNRS, University of Angers
2, Boulevard Lavoisier, 49045 Angers, France

and N.B. Aleksic
Institute of Physics, Pregrevica 118, 11001 Belgrade, Serbia

The generation and nonlinear dynamics of multi-dimensional optical

dissipative solitonic pulses are examined. The variational method is extended

to complex dissipative systems, in order to obtain steady state solutions

of the one-, two-, and three-dimensional complex cubic-quintic Ginzburg–

Landau equation. A stability criterion is established fixing a domain of

dissipative parameters for stable steady state solutions. Following numerical

simulations, evolution of even asymmetric input pulse from this domain leads

to stable dissipative solitons and light bullets.
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1. Introduction

An isolated system tends always to the thermodynamical equilibrium. A
nonlinear system open to the exchange of energy and mater with outside world
can reach a steady state far from the thermodynamical equilibrium. Following Pri-
gogine, such a system may self-organize into a dissipative structure [1]. Therefore,
above a critical value of a control parameter ε the system abandons the unstable
thermodynamical branch of the bifurcation diagram, becoming structured on the
nonthermodynamical one, stabilized by permanent exchange of energy and matter
with the external world. In opposition with always stable equilibrium structure,
such a dissipative structure becomes stable when it reaches dynamic equilibrium.
Complex nonlinear dissipative systems are now subject of very broad interest [2].
Wide class of such systems, ranging from nonlinear optics, plasma physics, and
fluid dynamics to superfluidity, superconductivity, and Bose–Einstein condensates,
can be modelled by complex Ginzburg–Landau equations [3]. Solitons belong to
this class. The soliton is a temporal, spatial, or spatiotemporal localized structure
conserving its shape after collision with another soliton. A soliton is generated
due to the balance between linear and nonlinear effects. Being self-organized and
self-maintained a soliton is astonishingly robust resisting to various perturbations.
Taking into account these properties the soliton appears as a best candidate for
transport and processing of information. Temporal solitons may soon become
the principal carrier in telecommunication in dispersion compensated optical fibre
transmission systems [4]. Spatiotemporal solitons can be used in all-optical signal
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processing since they are self-guided in bulk media carrying big power for a small
dissipated energy. Stable operation of laser systems, closely related to the issue
of dissipative soliton stability, is crucial for generating ultrashort pulses [5]. Spa-
tiotemporal soliton completely localized in all transverse coordinates x, y, and time
t is called light bullets when both diffraction and dispersion are compensated by
spatiotemporal self-focusing [6]. A prerequisite to establish a bridge between the
theory and the experiment is to consider dissipative systems. In such systems, the
solitonic structure can be preserved if appropriate gains match linear and nonlin-
ear losses. Optical solitons as a form preserving self-confined dissipative structures
can be described by the multidimensional complex cubic-quintic Ginzburg–Landau
equations (CQGLE) [7]. Such nonintegrable systems can be solved only numer-
ically. However, an analytical approach, even though approximate, is needed in
order to guide simulations and to avoid tedious numerical computations necessary
to determine the stability domain point by point. In recent publication we used
the variational method extended to dissipative systems, to establish this stabil-
ity domain of parameters for CQGLE with radially symmetric input [8]. Indeed,
an analytical stability criterion for dissipative one-, two-, and three-dimensional
solitons is established and confirmed by exhaustive numerical simulations. Such a
criterion provides analytically a broad domain of input parameters for generation
of stable (3 + 1)-dimensional dissipative light bullets.

2. Ginzburg–Landau equation with radially symmetric input
In order to generate one- or few-parameters family of solitons with transverse

dimension D = 1, 2, 3, the diffraction and/or dispersion have to be compensated
by spatial and/or temporal self-focusing [6]. However, real systems are generally
dissipative, thus, linear and nonlinear gain and loss have to be taken into account
reducing the family of solitons for a given set of dissipative parameters into a
fixed double solution [8]. Dynamics of dissipative solitons can be described by a
(D+1)-dimensional nonlinear CQGLE for the normalized complex envelope of the
optical field E:

i
∂E

∂z
+ ∆E + |E|2E + ν|E|4E = iδE + iε|E|2E + iµ|E|4E + iβ∆E ≡ Q, (1)

where ∆E = r1−D∂(rD−1∂E/∂r)/∂r is the D-dimensional Laplacian describing
beam diffraction and/or anomalous group velocity dispersion. In radially sym-
metric CQGLE second order derivatives are made with respect to the light bullet
radius r =

√
x2 + y2 + t2 imposing a constraint to independent transverse space

(x and y) and time (t) variables [6]. In order to prevent the wave collapse the
saturating nonlinearity is required. Therefore, cubic and quintic nonlinearity have
to have opposite signs, i.e., parameter ν is negative. In order to have a stable pulse
background, the linear dissipation term has to correspond to loss, the parameter
δ must be always negative. The cubic and quintic gain-loss terms contain respec-
tively parameters ε and µ. The last term accounts for the parabolic gain and must
be positive β > 0. A prerequisite for generation of dissipative solitons is a simul-
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taneous balance of not only diffraction and/or dispersion with self-focusing but
also gain with loss. First, the variation approach has to be extended to complex
dissipative systems described by CQGLE.

The total Lagrangian L = LC + LQ of the system described by Eq. (1)
contains besides a conservative part LC also a dissipative part LQ. Following
Hamilton’s principle the Lagrangian integral is stationary under condition that
the Euler–Lagrange equation corresponds to Eq. (1). The trial function of Gaus-
sian shape

E = A(z) exp
(
− r2

2R(z)2
+ iC(z)r2 + iΨ(z)

)
, (2)

is expressed as a functional of amplitude A, pulse width R, wave front curvature
C, and phase Ψ [8]. Optimisation of each of these functions gives one of four
Euler–Lagrange equations averaged over transverse coordinates

d
dz

(
∂Lc

∂η′

)
− ∂Lc

∂η
= 2<

∫
rD−1drQ

∂E∗

∂η
≡ Qη, (3)

where < denotes the real part. The averaged conservative Lagrangian is denoted
by Lc =

∫
drLC. In the dissipative case the power P = A2RD is no longer a con-

stant [6]. The parameter δ is always negative δ = −|δ| [8]. It is renormalized as
follows: δ∗ = |δ|R2

∗ where R∗ = (8/3)1/2(4/3)D/4. All remaining dissipative pa-
rameters are divided by δ∗ and renormalized in order to be expressed in an unique
form valid for different dimensions D: ε0 = 2ε/δ∗, µ0 = 3µ/2δ∗, and β0 = Dβ/2δ∗.
All other quantities are also renormalized: , R/R∗ → R, z/R2

∗ → z, R2
∗C → C,

and A/A∗ → A, where A∗ = (3/4)1/2(3/2)D/4. Therefore, within variational ap-
proximation, to the partial differential CQGLE corresponds a set of four coupled
first order differential equations (FODEs)

dA

dz
=

(
4 + D

4
ε0A

3 +
3 + D

3
µ0A

5 − 2β0

R2
A−A

)
δ∗ − 2DCA ≡ FA, (4)

dR

dz
=

(
2β0

DR
− 4β0R

3C2 − ε0

2
RA2 − 2µ0

3
RA4

)
δ∗ + 4RC ≡ FR, (5)

dC

dz
=

1
R4

− A2

R2
− νA4

R2
− 4C2 − 8

β0δ∗
DR2

C ≡ FC , (6)

and
dΨ
dz

= 4β0δ∗C − D

R2
+

4 + D

2
A2 +

3 + D

2
νA4 ≡ Ω . (7)

The steady state solutions can be obtained from Eqs. (4)–(6) for vanishing deriva-
tives of amplitude, width, and curvature. These variables are expanded up to the
small parameter θ = max{β, δ, ε, µ} ¿ 1; R = R0 + O(θ2) and A = A0 + O(θ2),

as well as C = C1δ∗ + O(θ2). The lowest order width R = A−1(1 + νA2)−
1
2

and the propagation constant Ω = 0.5A2[(4 −D) + ν(3 −D)A2] depend only on
the amplitude as in the conservative case [6]. Variationally obtained families of
conservative steady state solutions for D = 1, 2, and 3 reduces, in the dissipative
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case, to a fixed double solution for a given set of dissipative parameters. Indeed,
the amplitude as a steady state solution of Eqs. (4)–(6), has two discrete values
A+ and A−:

A± =

√
(β0 − ε0)±

√
(β0 − ε0)2 + 4(µ0 − νβ0)
2(µ0 − νβ0)

. (8)

The existence of either unique solution A+ or double solution (A− > A+) implies
a cubic gain ε > 0 and a quintic loss µ < 0.

Unique solutions are separated in Fig. 1 from double solutions by the a-line
corresponding to µ0 = 1− ε0 + β0(1 + ν). The domain of double solutions is also
limited by the d-parabola expressed as (β0−ε0)2+4(µ0−νβ0) = 0. Double solution
for the set of dissipative parameters ε0 = 19, µ0 = −23.5, β0 = 1.5, δ∗ = 0.001,
and ν = −1 is illustrated by a diamond superposed on a triangle in Fig. 1.

Fig. 1. Domain of stable solutions A−.

Fig. 2. Upper stable and lower unstable branches of variational (v) and numerical (n)

bifurcation curves.
Another striking difference with conservative systems is the nonzero wave

front curvature C = A2[ε0/8 − β0/2D + (µ0/6 − νβ0/2D)A2]δ∗ [6]. The gain–
loss balance together with the compensation of diffraction and/or dispersion with
saturating nonlinearity can be realized only for nonzero curvature fixed steady
state solutions. Only stable solutions can be solitons. Variationally obtained
Euler–Lagrange equations are the starting point in order to establish a stability
criterion using the method of Lyapunov’s exponents [1]. A Jacoby determinant is
constructed from derivatives with respect to amplitude, width, and curvature of
terms FA, FR, and FC of Eqs. (4)–(6) taken in steady state. Following Lyapunov,
steady state solutions of the set of nonlinear FODEs are stable if and only if
the real part of solutions λ of cubic equation λ3 + α1λ

2 + α2λ + α3 = 0 are
negative [1]. In order to have Lyapunov’s stability, Hurwitz’s conditions must be
fulfilled: coefficients α3 and α2 as well as their combination α6 = α1α2 − α3 have
to be positive. Therefore, the stability criterion for variationally obtained steady
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state solutions of D-dimensional CQGLE, up to θ, is explicitly expressed

α2 = 4A4(1 + νA2)[2−D − 2ν(D − 1)A2] +O(θ2) > 0,

α3 = 16A4(1 + νA2)[(νε0 − µ0)A4 − 2νA2 − 1]δ∗ +O(θ3) > 0

with

α1 =
[−8/D + ε0(8/D − 1−D/2)A2 + µ0(8/D − 8/3− 4D/3)A4

]
δ∗.

The coefficient α3 is everywhere positive on the solution A− and negative on
A+. As a consequence, only solutions A− can be potentially stable. Above tilted
horseshoe b, c, and e corresponding to α4 = 0 the solution A− of appropriate
dimension is stable. This solution is a stable focus since α5 = 4α3

2 > 0. For
instance, for the set of dissipative parameters chosen above, the triangle on the
lower unstable branch and the diamond on the upper stable branch of the v-curve
in Fig. 2 representing the amplitude as a function of a dissipative parameter ε0,
correspond respectively to A+ and to A−. Therefore, the stability criterion implies
that any steady state solution of 1-, 2-, or 3-dimensional CQGLE belonging to the
established stable domain of dissipative parameters will be stable. This criterion
is tested using numerical simulations of CQGLE. Input pulse chosen in the stable
domain of parameters is not yet a stable soliton since the variationally obtained
v-bifurcation curve does not coincide with the exact numerically obtained n-curve
in Fig. 2 (see two diamonds). However, following our numerical simulations, the
input pulse with parameters from the established stable domain evolves towards
the stable dissipative soliton on the n-bifurcation curve. Therefore, whenever an
input pulse belongs to the stable domain the final stage of evolution is always a
stable dissipative soliton. Therefore, generated Prigogine’s dissipative structure
which is self-maintained against dissipation, is a stable dissipative soliton.

3. Ginzburg–Landau equation with asymmetric input

In order to take into account experimental conditions, the light bullet has to
be generated starting from an input pulse asymmetric with respect to transverse
coordinates x, y, and time t [9]. Therefore, we extend the synergy of our analytical
and numerical approach in order to study a much broader class of Ginzburg–
Landau systems involving asymmetric input pulses. As a consequence, here we
study (3 + 1)-dimensional CQGLE describing separately diffractions following x

and y coordinates and anomalous group velocity dispersion in time t without any
constraint, i.e. in Eq. (1) Laplacian is ∆E = ∂2E/∂x2 +∂2E/∂y2 + ∂2E/∂t2. For
a given set of parameters the continuous family of solutions reduces to a fixed one
representing an isolated attractor [10]. The independent treatment of all three
transverse coordinates involves an asymmetric trial function

E = A exp
(
− x2

2X2
− y2

2Y 2
− t2

2T 2
+ iCx2 + iSy2 + iGt2 + iΨ

)
(9)

as functional of amplitude A, temporal (T ) and spatial (X and Y ) pulse widths,
anisotropic wave front curvatures C and S, chirp G, and phase Ψ .
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Within variational approximation, to the partial differential CQGLE corre-
sponds now a set of eight coupled FODEs resulting from the variations in amplitude

dA

dz
= δA +

7εA3

8
√

2
+

2µA5

3
√

3
− βA

X2
− βA

Y 2
− βA

T 2
− 2(C + S + G)A, (10)

different widths X, Y , and T ,
dX

dz
= 4CX − εXA2

4
√

2
− 2µXA4

9
√

3
+

β

X
− 4βC2X3, (11)

dY

dz
= 4SY − εY A2

4
√

2
− 2µY A4

9
√

3
+

β

Y
− 4βS2Y 3, (12)

dT

dz
= 4GT − εTA2

4
√

2
− 2µTA4

9
√

3
+

β

T
− 4βG2T 3, (13)

different wave front curvatures C, S, and G,
dC

dz
=

1
X4

− A2

4
√

2X2
+

2µA4

9
√

3X2
− 4C2 − 4βC

X2
, (14)

dS

dz
=

1
Y 4

− A2

4
√

2Y 2
+

2µA4

9
√

3Y 2
− 4S2 − 4βS

Y 2
, (15)

dG

dz
=

1
T 4

− A2

4
√

2T 2
+

2µA4

9
√

3T 2
− 4G2 − 4βG

T 2
, (16)

and phase
dΨ
dz

= 2β(C + S + G)− 1
X2

− 1
Y 2

− 1
T 2

+
7A2

8
√

2
− 2νA4

3
√

3
. (17)

The exact steady state solutions are obtained from Eqs. (10)–(16) for zero
z derivatives of amplitude, widths, and curvatures. The only possible steady
state solutions are symmetric with equal widths X = Y = T and curvatures
C = S = G. The steady state solutions of seven coupled FODEs are stable if and
only if following Hurwitz’s conditions the real part of solutions λ of equation

(λ3 + α1λ
2 + α2λ + α3)(λ2 + α4λ + α5)2 = 0

are non-positive. The stability criterion for steady state solutions of Ginzburg–
Landau equation is explicitly expressed up to δ0 as

α2 = 0.07A4(1.38− νA2)(4νA2 − 1.38) +O(θ2) > 0,

α3 = 0.02A4(1.38− νA2)2[(4ε− 3β)A2 − 22.63|δ|] +O(θ3) > 0,

α4 = [0.35(ε + 2β)A2 + 0.29(µ− 2νβ)A4] +O(θ3) > 0,

and

α5 = O(θ2)

as well as

α6 = α1α2 − α3
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with

α1 = (0.06εA2 − 0.77µA4 − 2.67|δ|) +O(θ3).

As a consequence, in the (ε, µ)-domain in Fig. 3 only A− solution is stable in the
shaded region between curves α2 = 0 and α6 = 0 (separated by a square), as well
as α4 = 0. Full curves correspond to the exact solution of the same set of equations
solved parametrically. Input pulse chosen in the stable domain of parameters is
not yet a light bullet since the variationally obtained bifurcation curve v in Fig. 4
corresponding to the power P as a function of the parameter εδ = ε/|δ| is only a
good approximation of exact bifurcation curve n obtained by numerical solution
of Eq. (1).

Fig. 3. Stability domain of A− solutions computed exactly (full curves) and up to θ

(dashed curves). εδ = ε/|δ|, µδ = µ/|δ|, βδ = β/|δ|.
Fig. 4. Stable and unstable branches of variational (v) and numerical (n) curves with

insets corresponding to asymmetric (a) and symmetric (b) inputs as well as to soliton (c).

The analytically predicted domain of stability is exhaustively checked point
by point using numerical simulations of Eq. (9); a stable soliton is generated from
each point. If the stable steady state solution is taken as the input in numerical
simulations (inset (b) in Fig. 4), it will evolve shrinking towards the stable dissi-
pative soliton (inset (c)) represented by the diamond on the numerical simulations
(inset (b) in Fig. 4), it will evolve shrinking towards the stable dissipative soliton
(inset (c)) represented by the diamond on the exact n-curve. However, the same
final soliton can be obtained starting from an asymmetric, i.e., ellipsoidal input
pulse (inset (a)) with the same set of dissipative parameters belonging to the stable
domain, as numerical simulations demonstrate.

4. Conclusion

In conclusion, in order to obtain steady state solutions of the (D + 1)-
-dimensional CQGLE, an analytical approach is developed based on the extension
of the variational method to dissipative systems. In order to treat simultaneously
all three dimensions, the D-dimensional Laplacian in CQGLE has to be centrosym-
metric excluding asymmetric input pulses. Based on this variational approach and
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the method of Lyapunov exponents, a general stability criterion for dissipative
D-dimensional solitons is established. Input pulses generated in the proposed
domain of dissipative parameters, evolve towards stable dissipative solitons, as
numerical simulations of CQGLE confirm. CQGLE is also treated for the non-
spherically symmetric input, using jointly numerical and analytical approach. A
new stability criterion based on FODEs without spherical symmetry, is established
in order to select stable steady state solutions from the domain of dissipative pa-
rameters obtained analytically through exact parametric resolution. Stability of
the analytically predicted domain is point by point confirmed using numerical sim-
ulations. Following our numerical simulations each asymmetric input pulse with
dissipative parameters chosen from the stability domain determined by that crite-
rion, will evolve attracted by the fixed exact solution in order to self-organize into
a dissipative light bullet. It is worthwhile to stress that even very asymmetric in-
put pulses (like in Fig. 4), which are far from stable spherically symmetric steady
states, but for the same dissipative parameters, always self-organize into soliton.
The opportunity to treat analytically and numerically asymmetrical input pulses
propagating toward stable and robust dissipative light bullets, opens possibilities
for diverse practical applications for conception of all-optical transmission systems,
signal processing, and mode-locked laser generating ultrashort pulses.
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